Identity-based Encryption with Post-Challenge Auxiliary Inputs for Secure Cloud Applications and Sensor Networks

Tsz Hon Yuen - Huawei, Singapore Ye Zhang - Pennsylvania State University, USA Siu Ming Yiu - University of Hong Kong, Hong Kong Joseph K. Liu - Institute for Infocomm Research, Singapore

Table of Content

- Introduction
- Motivation of this work
- Contribution
- Security Model
- Our Scheme
- Conclusion

Introduction - IBE

- Identity-based encryption (IBE)
 - □ Use identity (e.g. name, email etc.) to encrypt
 - Private key issued by a trusted party called Private Key Generator (PKG)
 - □ No certificate required
- IBE can be used to protect data confidentiality in cloud computing era; or wireless sensor network
- More convenience

Introduction – Practical Threats of Using IBE

- Side Channel Attacks to the Decryptor
 - Real world attackers can obtain partial information about the secret key of the decryptor
 - Side-channel attacks explore the physical weakness of the implementation of cryptosystems
 - Some bits of the secret key can be leaked by observing the running time of the decryption process, or the power consumption used

Introduction – Practical Threats of Using IBE

- Weak Randomness Used by the Encryptor
 - The randomness used in the encryption process may be leaked by poor implementation of pseudorandom number generator (PRNG)
 - In big data applications, data are usually generated by some devices with limited computational power
 - It is possible that the data are encrypted using such weak randomness from java runtime libraries
 - wireless sensors as they are usually exposed in the open air but contain only very limited computation power
 - Attackers may easily guess the randomness they are using for generating the ciphertext

Motivation for Post-Challenge Auxiliary Inputs

- We need to provide leakage-resilient protection for users of the cloud applications and wireless sensor network
- It includes the encryptor and the decryptor
- Protecting the Decryptor: Leakage-Resilient Cryptography

Leakage-Resilient Cryptography

- In modern cryptography, we use a security model to capture the abilities of a potential attacker (the adversary)
- For example, in the chosen-ciphertext attack (CCA) model the adversary is allowed to ask for the decryption of arbitrary ciphertexts, except for the one that he intends to attack
- But if the adversary has some extra abilities, the security of the scheme is no longer guaranteed
- In most traditional security models, it is assumed that the adversary does not have the ability to obtain any information (even one single bit)

Leakage-Resilient Cryptography

- However, due to the advancement of a large class of side-channel attacks, obtaining partial information of the secret key becomes easier
- the assumption for absolute secrecy of the secret key may not hold
- leakage-resilient cryptography to formalize these attacks in the security model
- models various side-channel attacks by allowing the adversary to specify a function f and to obtain the output of f applied to the secret key sk (auxiliary input)

Restriction of the Auxiliary Input Model

- CCA security model for PKE and IBE, the adversary A is allowed to ask for the decryption of arbitrary ciphertexts before and after receiving the challenge ciphertext C*
- But for most leakage-resilient PKE or IBE, the adversary A can only specify and query the leakage function f(sk) before getting C*
 - Reason: If we allow A to specify the leakage function after getting C*, he can easily embed the decryption of C* as the leakage function, which will lead to a trivial break to the security game
- Cannot exactly reflect the real situation!
- Need a model with minimal restriction needed to allow postchallenge leakage query after getting the challenge ciphertext, while avoiding the above trivial attack

Protecting the Encryptor

- Leakage-Resilient from the Encryptor's Randomness
- If the adversary A can obtain the entire r (randomness), it can encrypt the two challenge messages m0 and m1 by itself using r and compare if they are equal to the challenge ciphertext
- It wins the game easily!
- Consider the following example:
 - Enc': On input a message M and a public key pk, pick a random one-time pad P for M and calculate $C_1 = \text{Enc}(\text{pk}, P), C_2 = P \oplus M$, where \oplus is the bit-wise XOR. Return the ciphertext $C = (C_1, C_2)$.
 - Dec': On input a secret key sk and a ciphertext $C = (C_1, C_2)$, calculate $P' = \text{Dec}(\text{sk}, C_1)$ and output $M = C_2 \oplus P'$.
- The randomness used in Enc' by the encryptor is P and the randomness in Enc
- Leaking the n-th bit of P leads to the leakage of the n-th bit in M

Contribution

- We propose the post-challenge auxiliary input model for public key and identity-based encryption
 - □ it allows the leakage after seeing the challenge ciphertext
 - it considers the leakage of two different parties: the secret key owner and the encryptor
- To the best of the authors' knowledge, no existing leakage-resilient PKE or IBE schemes consider the leakage of secret key and randomness at the same time
- We propose a generic construction of CPA-secure PKE in our new post-challenge auxiliary input model
- It is a generic transformation from the CPA-secure PKE in the auxiliary input model (AI-CPA PKE) and a new primitive called the strong extractor with hard-to-invert auxiliary inputs

Contribution

- Similar transformation can also be applied to identity-based encryption (IBE). Therefore we are able to construct pAI-ID-CPA IBE from AI-ID-CPA IBE
- We extend the generic transformation for CPA-secure IBE to CCAsecure PKE (by Canetti et al.) into the leakage-resilient setting
- Our contributions on encryption can be summarized in the following figure:

Security Model

- The basic setting of our new security model is similar to the classic IND-CCA model and the auxiliary input model for public key encryption
- Our improvement is to require the adversary A to submit a set of possible leakages F_0 that may be asked later in the security game
- A is only allowed to ask for at most q queries $f'_1, ..., f'_q \in F_0$ to the post-challenge leakage oracle and obtains $f'_1(r'), ..., f'_q(r')$, where r' is the encryption randomness of the challenge ciphertext
- But A cannot recover r' with probability better than ϵ_r
- The security against post-challenge auxiliary inputs and adaptive chosen-ciphertext attacks is defined as the following game pAI-CCA

Security Model

- 1. The adversary \mathcal{A} submits a set of leakage functions \mathcal{F}_0 to the challenger \mathcal{C} with $m := |\mathcal{F}_0|$ is polynomial in λ .
- 2. \mathcal{C} runs $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda})$ and outputs pk to \mathcal{A} .
- 3. \mathcal{A} may adaptively query the (pre-challenge) leakage oracle: - $\mathcal{LO}_s(f_i)$ with f_i . $\mathcal{LO}_s(f_i)$ returns $f_i(\mathsf{sk}, \mathsf{pk})$ to \mathcal{A} .
- 4. \mathcal{A} submits two messages $m_0, m_1 \in \mathcal{M}$ of the same length to \mathcal{C} . \mathcal{C} samples $b \leftarrow \{0, 1\}$ and the randomness of encryption $r' \leftarrow \{0, 1\}^*$. It returns $C^* \leftarrow \text{Enc}(\mathsf{pk}, m_b; r')$ to \mathcal{A} .
- A may adaptively query the (post-challenge) leakage oracle and the decryption oracle:
 - $-\mathcal{LO}_r(f'_i)$ with $f'_i \in \mathcal{F}_0$. It returns $f'_i(r')$ to \mathcal{A} .
 - $-\mathcal{DEC}(C)$ with $C \neq C^*$. It returns Dec(sk, C) to \mathcal{A} .
- 6. \mathcal{A} outputs its guess $b' \in \{0, 1\}$. The advantage of \mathcal{A} is $Adv_{\mathcal{A}}^{\text{pAI-CCA}}(\Pi) = |\Pr[b = b'] \frac{1}{2}|$.

Scheme Description

Strong Extractor with Hard-to-invert Auxiliary Inputs

Definition : $((\epsilon, \delta)$ -Strong extractor with auxiliary inputs). Let Ext : $\{0, 1\}^{l_1} \times \{0, 1\}^{l_2} \rightarrow \{0, 1\}^{m'}$, where l_1, l_2 and m' are polynomial in λ . Ext is said to be a (ϵ, δ) -strong extractor with auxiliary inputs, if for every PPT adversary \mathcal{A} , and for all pairs (x, f) such that $x \in \{0, 1\}^{l_2}$ and $f \in \mathcal{H}_{ow}(\epsilon)$, we have:

 $\left|\Pr[\mathcal{A}(r, f(x), \mathsf{Ext}(r, x)) = 1] - \Pr[\mathcal{A}(r, f(x), u) = 1]\right| < \delta.$

where $r \in \{0,1\}^{l_1}$, $u \in \{0,1\}^{m'}$ are chosen uniformly random.

Interestingly, we found out that a (ϵ, δ) -strong extractor with auxiliary inputs can be constructed from

 $\langle r, x \rangle = \sum_{i=1}^{l} r_i x_i$ the inner product of $x = (x_1, \dots, x_l)$ and $r = (r_1, \dots, r_l)$

(Proof is in the paper)

Construction of pAI-CPA Secure PKE

Let $\mathcal{H}_{ow}(\epsilon_r)$ be the class of all polynomial-time computable functions $h: \{0,1\}^{|r'|} \to \{0,1\}^*$, such that given h(r') (for a randomly generated r'), no PPT algorithm can find r' with probability greater than ϵ_r . The function h(r') can be viewed as a composition of $q \in \mathbb{N}^+$ functions: $h(r') = (h_1(r'), \ldots, h_q(r'))$. Therefore $\{h_1, \ldots, h_q\} \in \mathcal{H}_{ow}(\epsilon_r)$.

Let $\mathcal{H}_{\mathsf{pk-ow}}(\epsilon_s)$ be the class of all polynomial-time computable functions $h: \{0,1\}^{|\mathsf{sk}|+|\mathsf{pk}|} \to \{0,1\}^*$, such that given $(\mathsf{pk}, h(\mathsf{sk}, \mathsf{pk}))$ (for a randomly generated $(\mathsf{sk}, \mathsf{pk})$), no PPT algorithm can find sk with probability greater than ϵ_s . The function $h(\mathsf{sk}, \mathsf{pk})$ can be viewed as a composition of q' functions: $h(\mathsf{sk}, \mathsf{pk}) = (h_1(\mathsf{sk}, \mathsf{pk}), \dots, h_{q'}(\mathsf{sk}, \mathsf{pk}))$. Therefore $\{h_1, \dots, h_{q'}\} \in \mathcal{H}_{\mathsf{pk-ow}}(\epsilon_s)$.

Construction of pAI-CPA Secure PKE

Let $\Pi' = (\text{Gen}', \text{Enc}', \text{Dec}')$ be an AI-CPA secure encryption (with respect to family $\mathcal{H}_{\mathsf{pk-ow}}(\epsilon_s)$) where the encryption randomness is in $\{0, 1\}^{m'}$, $\mathsf{Ext} : \{0, 1\}^{l_1} \times \{0, 1\}^{l_2} \to \{0, 1\}^{m'}$ is a $(\epsilon_r, \mathsf{neg}(\lambda))$ -strong extractor with auxiliary inputs, then a pAI-CPA secure (with respect to families $(\mathcal{H}_{\mathsf{pk-ow}}(\epsilon_s), \mathcal{H}_{\mathsf{ow}}(\epsilon_r)))$ encryption scheme Π can be constructed as follows.

- 1. Gen (1^{λ}) : It runs $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}'(1^{\lambda})$ and chooses r uniformly random from $\{0, 1\}^{l_1}$. Then, we set the public key $\mathsf{PK} = (\mathsf{pk}, r)$ and the secret key $\mathsf{SK} = \mathsf{sk}$.
- 2. $\text{Enc}(\mathsf{PK}, M)$: It picks x uniformly random from $\{0, 1\}^{l_2}$. Then, it computes $y = \mathsf{Ext}(r, x)$. The ciphertext is $c = \mathsf{Enc}'(\mathsf{pk}, M; y)$.
- Dec(SK, c): It returns Dec'(sk, c).

Theorem 3. If Π' is an AI-CPA secure encryption with respect to family $\mathcal{H}_{pk-ow}(\epsilon_s)$ and Ext is a $(\epsilon_r, neg(\lambda))$ -strong extractor with auxiliary inputs, then Π is pAI-CPA secure with respect to families $(\mathcal{H}_{pk-ow}(\epsilon_s), \mathcal{H}_{ow}(\epsilon_r))$.

Extension to IBE setting

Extension to IBE. We can use the same technique to construct pAI-ID-CPA secure IBE. Let $\Sigma' = (\text{Setup'}, \text{Extract'}, \text{Enc'}, \text{Dec'})$ be an AI-ID-CPA secure IBE (e.g. [19]) where the encryption randomness is in $\{0, 1\}^{m'}$, $\text{Ext} : \{0, 1\}^{l_1} \times \{0, 1\}^{l_2} \rightarrow \{0, 1\}^{m'}$ is a $(\epsilon_r, \text{neg}(\lambda))$ -strong extractor with auxiliary inputs, then construct a pAI-ID-CPA secure IBE scheme Σ as follows.

- Setup(1^λ): It runs (mpk, msk) ← Setup'(1^λ) and chooses r uniformly random from {0,1}^{l₁}. Then, we set the master public key MPK = (mpk, r) and the master secret key MSK = msk.
- 2. Extract(MSK, ID): It returns $sk_{ID} \leftarrow Extract(MSK, ID)$.
- Enc(MPK, ID, M): It chooses x uniformly random from {0,1}^l. Then, it computes y = Ext(r, x). The ciphertext is c = Enc'(mpk, ID, M; y).
- Dec(sk_{ID}, c): It returns Dec'(sk_{ID}, c).

Theorem 4. If Σ' is an AI-ID-CPA secure IBE with respect to family $\mathcal{H}_{\mathsf{pk}-\mathsf{ow}}(\epsilon_s)$ and Ext is a $(\epsilon_r, \mathsf{neg}(\lambda))$ -strong extractor with auxiliary inputs, then Σ is pAI-ID-CPA secure with respect to families $(\mathcal{H}_{\mathsf{pk}-\mathsf{ow}}(\epsilon_s), \mathcal{H}_{\mathsf{ow}}(\epsilon_r))$.

CCA Public Key Encryption from CPA IBE

 We give a first attempt, using the transformation given by Canetti (simply change the underlying IBE to be secure in the corresponding post-challenge auxiliary input model)

Let $(Gen_s, Sign, Verify)$ be a strong one-time signature scheme. Let (Setup', Extract', Enc', Dec') be an auxiliary-inputs CPA secure IBE scheme

- 1. Gen (1^{λ}) : Run (mpk, msk) \leftarrow Setup' (1^{λ}) . Set the public key pk = mpk and the secret key sk = msk.
- 2. $\operatorname{Enc}(\operatorname{pk}, M)$: Run $(\operatorname{vk}, \operatorname{sk}_s) \leftarrow \operatorname{Gen}_s(1^{\lambda})$. Calculate $c \leftarrow \operatorname{Enc}'(\operatorname{pk}, \operatorname{vk}, M)$ and $\sigma \leftarrow \operatorname{Sign}(\operatorname{sk}_s, c)$. Then, the ciphertext is $C = (c, \sigma, \operatorname{vk})$.
- 3. Dec(sk, C): First, test $Verify(vk, c, \sigma) \stackrel{?}{=} 1$. If it is "1", compute $sk_{vk} = Extract'(sk, vk)$ and return $Dec'(sk_{vk}, c)$. Otherwise, return \bot .
- The main challenge of pAI-CCA secure PKE is how to handle the leakage of the randomness used in the challenge ciphertext
- It includes the randomness used in Gens, Sign and Enc', denoted as r_{sig1}, r_{sig2} and r_{enc}

CCA Public Key Encryption from CPA IBE

- We can re-write as $(vk, sk_s) \leftarrow Gen_s(1^{\lambda}; r_{sig_1}), \sigma \leftarrow Sign(sk_s, c; r_{sig_2})$
 - and $c \leftarrow \text{Enc}'(\text{mpk}, \text{vk}, m_b; r_{enc})$
- The adversary may ask:
 - $f_1(r') = r_{enc}$, such that f_1 is still hard-to-invert upon r'. In this case, \mathcal{A} can test $c^* \stackrel{?}{=} \operatorname{Enc'}(\mathsf{mpk}, \mathsf{vk}, m_0; r_{enc})$ to win the pAI-CCA game; or
 - $f_2(r') = (r_{sig_1}, r_{sig_2})$, such that f_2 is still hard-to-invert upon r'. In this case, given r_{sig_1} , \mathcal{A} can generate $(vk, sk_s) = \text{Gen}_s(1^{\lambda}; r_{sig_1})$ which causes $\Pr[\text{Forge}]$ defined in [5] to be non-negligible ("Forge" is the event that \mathcal{A} wins the game by outputting a forged strong one-time signature).

CCA Public Key Encryption from CPA IBE

- Our Solution: set r_{sig_1} , r_{sig_2} , r_{enc} are generated by the same source
- The randomness used in the IBE and the one-time signature can be calculated by $r_{enc} = Ext(r_1, x)$ and $(r_{sig_1} || r_{sig_2}) = Ext(r_2, x)$ for some random x
- The pAI-CCA adversary A can ask for the leakage of f(x), where f is any hard-to-invert function
 - 1. Gen (1^{λ}) : Run (mpk, msk) \leftarrow Setup' (1^{λ}) . Choose r_1, r_2 uniformly random from $\{0, 1\}^{l_1}$. Set the public key pk = (mpk, r_1, r_2) and the secret key sk = msk.
 - 2. $\operatorname{Enc}(\operatorname{pk}, m)$: Randomly sample $x \in \{0, 1\}^{l_2}$, calculate $r_{\operatorname{enc}} = \operatorname{Ext}_1(r_1, x)$ and $r_{\operatorname{sig}_1} || r_{\operatorname{sig}_2} = \operatorname{Ext}_2(r_2, x)$. Run $(\operatorname{vk}, \operatorname{sk}_s) = \operatorname{Gen}_s(1^{\lambda}; r_{\operatorname{sig}_1})$. Let $c = \operatorname{Enc}'(\operatorname{pk}, \operatorname{vk}, m; r_{\operatorname{enc}})$; $\sigma = \operatorname{Sign}(\operatorname{sk}_s, c; r_{\operatorname{sig}_2})$. Then, the ciphertext is $C = (c, \sigma, \operatorname{vk})$.
 - Dec(sk, C): First, test Verify(vk, c, σ) [?]= 1. If it is "1", compute sk_{vk} = Extract(sk, vk) and return Dec'(sk_{vk}, c). Otherwise, return ⊥.

Theorem 5. Assuming that Π' is a AI-sID-CPA secure IBE scheme with respect to family $\mathcal{H}_{\mathsf{pk}-\mathsf{ow}}(\epsilon_s)$, Π_s is a strong one-time signature, and Ext_1 is $(\epsilon_r, \mathsf{neg}_1)$ strong extractor with auxiliary inputs and Ext_2 is $(2\mathsf{neg}_1, \mathsf{neg}_2)$ -strong extractor with auxiliary inputs, then there exists a PKE scheme Π which is pAI-CCA secure with respect to families $(\mathcal{H}_{\mathsf{pk}-\mathsf{ow}}(\epsilon_s), \mathcal{H}_{\mathsf{ow}}(\epsilon_r))$.

Conclusion

• We propose a new model to capture:

- □ the leakage after the adversary seeing the challenge ciphertext
- □ the leakage of two different parties: the secret key owner and the encryptor
- We give a generic construction of PKE + IBE in this new model (CPA secure)
- We also give a generic construction of CCA-PKE from CPA-IBE under this new model

