

Privacy-Preserving Complex Query Evaluation over Semantically Secure Encrypted Data

Bharath K. Samanthula, Wei Jiang, and Elisa Bertino

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

Cloud Computing

- Need for outsourcing
 - data and computations as well
 - useful for data owners' with limited/no resources
- Key challenges
 - data are typically encrypted before outsourcing
 - efficiency of data management is a major requirement

Query Processing over Encrypted Data

- Privacy Requirements:
 - user's query should not be disclosed
 - confidentiality of outsourced data
- The important question is: "how can the cloud perform searches over encrypted data without ever decrypting them or compromising the user's privacy"
- Lead to new research: privacy-preserving query evaluation over encrypted data (PPQED)

Three Possible Approaches

- 1. Download the entire encrypted database
 - not practical, incurs heavy costs on user
- 2. Secure Co-processors (e.g., IBM's 4764)
 - expensive, may not be meant for clouds
 - needs verification by users or a trusted third party
 - may not be affordable for small businesses
- 3. Custom-designed cryptographic methods
 - problem-specific cryptographic solutions
 - our work is based on this approach

Processing Complex Queries

- Existing PPQED methods are too specific (e.g., range and aggregate queries)
- Recent approaches: try to support complex queries, but are insecure / not feasible
- Our focus: A PPQED framework that can securely evaluate complex queries and is efficient from the user's perspective

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

System Model

- Three Entities:
 - The data owner (Alice)
 - The cloud service provider
 - The data consumer (Bob)
- Alice wants to outsource its database T and query processing services to the cloud
- Bob wants to retrieve the data records of T stored in the cloud that satisfy its query Q

Problem Definition

- Alice holds T = <t₁,..., t_n>, where each t_i,1 ≤ i ≤ n, is a database record and consists of m attributes
- Alice encrypts T attribute-wise and sends it to a cloud
- Bob issues a complex query Q to the cloud and wants to retrieve t_i's that satisfy Q.

Problem Definition (contd.)

- Q is defined as a query with arbitrary number of subqueries where each sub-query consists of conjunctions and/or disjunctions of an arbitrary number of relational predicates
- Q: $G_1 \vee G_2 \vee ... \vee G_{l-1} \vee G_l \rightarrow \{0,1\}$
- G_j is a clause with a number b_j of predicates and is given by $P_{j,1} \wedge P_{j,2} \wedge ... \wedge P_{j,b_{j-1}} \wedge P_{j,b_{j}}$
- Eg: Q = ((Age ≥ 40) ^ (Disease = Diabetes)) ∨
 ((Sex = M) ^(Marital Status = Married) ^
 (Disease = Diabetes))

Problem Definition (contd.)

 Main goal of PPQED: Facilitate Bob in efficiently retrieving from T' (encrypted version of T) the data records that satisfy Q in a privacy-preserving manner:

 $PPQED(T', Q) \rightarrow S$

where $S \subseteq T$ denotes the output set of records that satisfy $Q, \forall t' \in S, Q(t') = 1$

Privacy Goals

- Data confidentiality of T (for Alice) at all times
- Query Privacy (for Bob)
 - S should be disclosed only to Bob
- T-S should never be disclosed to Bob and Alice
- Privacy of data access patterns: access patterns to data for any two queries Q and Q' should be indistinguishable to Cloud

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

Comparison with Related work

Method	Low Cost On Bob	Data Confidentiality	Query Privacy	Hide Data Access Patterns	CNF and DNF Query Support
Golle et al. [1]	×	✓	V	×	×
Boneh and Waters [2]	×	✓	V	×	×
Popa et al. [3]	•	×	×	×	✓
This paper	•	✓	V	•	•

^[1] Golle, P., Staddon, J., Waters, B., Secure conjunctive keyword search over encrypted data, In: ANCS, pp. 31-45, Springer (2004)

^[2] Boneh, D., Water, B., Conjunctive, subset, and range queries on encrypted data, In: TCC, pp. 535-554, Springer (2007)

^[3] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H., Cryptdb: protecting confidentiality with encrypted query processing, In: SOSP, pp. 85-100, ACM (2011)

Adversarial Model

- Secure Multi-party Computation (SMC):
 - semi-honest model
 - malicious model
- Our work assumes the semi-honest model (existing approaches are also based on this model)
- Future Work: Extend our solutions to the malicious setting

The Paillier Cryptosystem

- Additive homomorphic and probabilistic encryption scheme
- (E_{pk}, D_{sk}): encryption and decryption functions
- Homomorphic addition: $D_{sk}(E_{pk}(x+y)) = D_{sk}(E_{pk}(x)*E_{pk}(y) \mod N^2)$
- Homomorphic multiplication: $D_{sk}(E_{pk}(x*y)) = D_{sk}(E_{pk}(x)^y \mod N^2)$
- Semantic security: Given a ciphertext, the adversary cannot deduce any information about the corresponding plaintext

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

Federated Cloud Model

- Two non-colluding semi-honest cloud service providers, denoted by C₁ and C₂ (they together form a federated cloud)
- Alice generates (pk,sk), computes T' using pk and outsources it to C₁, where T'_{i,j} = E_{pk}(t_{i,j}), for 1 ≤ i ≤ n and 1 ≤ j ≤ m
- She also outsources sk to C₂

Basic idea

- Divide and Conquer:
 - securely evaluate each predicate
 - securely combine the predicate results
- Key challenge:
 - to perform the above two tasks over encrypted data in a privacy-preserving manner

Secure Primitives

- Secure Multiplication (SM): C₁ holds E_{pk}(a),
 E_{pk}(b) and C₂ holds sk, it computes E_{pk} (a*b)
- Secure Bit-OR (SBOR): C₁ holds Epk(o₁),
 Epk(o₂) and C₂ holds sk, it computes Epk(o₁∨o₂)
- Secure Comparison (SC): C_1 holds $E_{pk}(a)$, $E_{pk}(b)$ and C_2 holds sk, it computes $E_{pk}(c)$, where c = 1 if a > b and c = 0 otherwise. Here we assume $0 \le a,b < 2^w$
- Note: the outputs are revealed only to C₁

Secure Multiplication

Require: C_1 has $E_{pk}(a)$ and $E_{pk}(b)$; C_2 has sk

- **1.** C_1 : (a). Pick two random numbers $r_a, r_b \in Z_N$
 - (b). $a' \leftarrow E_{pk}(a) * E_{pk}(r_a)$
 - (c). b' $\leftarrow E_{pk}(b) * E_{pk}(r_b)$; send a', b' to C_2
- **2.** C_2 : (a). Receive a' and b' from C_1
 - (b). $h_a \leftarrow D_{sk}(a')$
 - (c). $h_b \leftarrow D_{sk}(b')$
 - (d). $h \leftarrow h_a * h_b \mod N$
 - (e). $h' \leftarrow E_{pk}(h)$; send h' to C_1
- 3. C1: (a). Receive h' from C_2
 - (b). $s \leftarrow h' * E_{pk}(a)^{N-rb}$
 - (c). $s' \leftarrow s * E_{pk}(b)^{N-ra}$
 - (d). $E_{pk}(a * b) \leftarrow s' * E_{pk}(N r_a * r_b)$

Evaluation of a Predicate

Let P: (k, α, op) be a predicate, where α denotes the search input, k denotes the attribute index, and op denotes the relational operator

 t_i satisfies the predicate P (i.e., P(t_i)=1) iff the relational comparison operation op on $t_{i,k}$ and α returns the Boolean value True.

Secure Evaluation of Individual Predicates (SEIP)

- For a given P (where the search input is in encrypted format), C₁ and C₂ have to securely compute E_{pk}(P(t_i))
- Two approaches:
 - Homomorphic Encryption (HE)
 - Garbled Circuits (GC)

HE based Solution (SEIP_h)

- Given $E_{pk}(t_{i,k})$ and $E_{pk}(\alpha)$, C_1 and C_2 need to compute $E_{pk}(c)$, where c = 1 if $t_{i,k} > \alpha$, and c = 0 otherwise
- Existing solution [4] leaks c to at least one party
- We extend the solution in [4] to compute E_{pk}(c), without leaking c or any other information

HE-based SC Protocol [4]

• C₁:

- Compute the difference $E_{pk}(d_i) = E_{pk}(x_i y_i)$
- Compute the XOR $E_{pk}(z_i) = E_{pk}(x_i \text{ XOR } y_i)$
- Compute encrypted vector γ such that $\gamma_i = 2y_{i-1} + z_i$, where $y_0 = 0$
- Compute encrypted vector δ such that $\delta_i = d_i + r_i * (\gamma_i 1)$
- **Observation:** exactly one of the values of δ is 1 (denoting x>y) and the remaining are random numbers
- Permute the encrypted vector and send it to C₂

• C₂:

- Decrypt the vector and check whether any of the values is 1
- If so, x > y. Otherwise, $x \le y$
- Note: The comparison result is revealed to C₂

SEIP_h (contd.)

- C₁ randomly selects a functionality F: t_{i,k} > α or t_{i,k} ≤ α
- C₁ and C₂ together run the SC protocol of [4] and the (oblivious) comparison result c' is known only to C₂
- C₂ encrypts c' and sends it to C₁
- Depending on F, C₁ computes E_{pk}(c) from E_{pk}(c')

Department of Computer Science

SEIP_h (contd.) - details

C₁:

- chooses F randomly and proceeds as follows.
 - If F: x > y, compute $E_{pk}(d_i) = E_{pk}(x_i y_i)$.
 - Otherwise, compute $E_{pk}(d_i) = Epk(y_i x_i)$, for $1 \le i \le w$.
- computes the encrypted vector δ using the similar steps (as discussed above) in protocol [4].
- permutes the encrypted vector (denoted as v) and sends v to C₂.

C_2 :

- decrypts the encrypted vector component-wise and finds the index k.
 - If $D_{sk}(v_k) = 1$, then compute $U = E_{pk}(1)$.
 - Else, i.e., when $D_{sk}(v_k) = -1$, compute $U = E_{pk}(0)$
- sends U to C1.

C_1 :

- computes the output E_{pk}(c) as follows.
 - If F: x > y, then $E_{pk}(c) = U$.
 - Else, $E_{pk}(c) = E_{pk}(1) * U^{N-1}$.

GC based solution (SEIP_g)

- C₁ (circuit generator) and C₂ (circuit evaluator)
 convert E_{pk}(t_{i,k}) and E_{pk}(α) into garbled values (as a
 part of circuit)
- C₁ and C₂ compare t_{i,k} and α using the SC technique given in [5].
- The result is randomized (as part of the circuit) by a value known only to C₁. The randomized result (revealed to C₂) is encrypted and sent to C₁
- Finally, C₁ removes the random factor to get E_{pk}(c)

Proposed PPQED Protocol

- Stage 1 Secure Evaluation of Predicates (SEP)
 - SEIP_n or SEIP_q(depending on the domain size)
- Stage 2 Secure Retrieval of Output Data (SROD)

A naïve solution (SROD_b)

- Use SM to evaluate each clause G_i
 - Given $E_{pk}(P_{j,h}(t_i))$, compute $E_{pk}(G_j(t_i)) = E_{pk}(P_{j,1}(t_i) \wedge ... \wedge P_{j,b_j}(t_i))$ using SM
- Use SBOR to compute final query result
 - Given $E_{pk}(G_j(t_i))$, compute $E_{pk}(Q(t_i)) = E_{pk}(G_1(t_i)) \cdot ...$ $\vee G_l(t_i)$
- Expensive for large number of predicates and clauses

Our Solution (SROD_s)

- To compute $E_{pk}(G_i(t_i))$:
 - Compute $E_{pk}(\Sigma_h P_{j,h}(t_i))$
 - Compare it with b_i using SC
 - Key Observation: $G_j(t_i) = 1$ iff $\Sigma_h P_{j,h}(t_i) = b_j$
- To compute E_{pk}(Q(t_i)):
 - Compute $E_{pk}(\Sigma_j G_j(t_i))$
 - Compare it with 0 using SC
 - **Key Observation**: $Q(t_i) = 1$ iff $\Sigma_j G_j(t_i) > 0$

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

SEIP_h vs. SEIP_g

- Implemented both using the Paillier Scheme
- Linux machine with Intel[™] Xeon[™] Six-Core® CPU 3.07 GHz processor, with 12 GB RAM, running Ubuntu 10.04 LTS

Encryption key size (*K*) is set to 1024 bits

SROD_b Vs. SROD_s

For any given data record t_i

Method	Computations	Communications
SROD _b	O(l * s) encryptions	O(K * l * s) bits
SROD _s	$O(l * \log_2 s)$ encryptions	$O(K * l * \log_2 s)$ bits

- *I*: number of clauses, *s*: upper bound on the number of predicates in each clause
- Our approach for SROD clearly outperforms the basic solution if s is large

Outline

- Motivation
- Problem Statement
- Related Work & Background
- Proposed Solution
- Complexity Analysis
- Conclusions/Future work

Summary

- A federated cloud framework that can support evaluations of complex queries in a privacypreserving manner
- Hybrid solution: homomorphic encryption or garbled circuits
- Systematic approach to efficiently aggregate the predicate results
- Our approach guarantees data confidentiality and privacy of the user's query

Future Work

- Implementation with MapReduce framework
- Extension to malicious setting
- In current work, we considered basic relational operators {<, >, ≤, ≥,=}
- Focus on other SQL queries, such as JOIN and GROUP BY, and evaluate their complexities

Thank You ©

ANY QUESTIONS !!!

APPENDIX

Semantically Secure Encrypted Data

- Why semantic security?
 - data indistinguishability from cloud's perspective
 - ensures privacy of the user's data
 - users have more control over their data
- Example: the Paillier's encryption scheme

HE-based SC Protocol [4]

- Goal of SC: Given that C₁ holds two integers E_{pk}(x) and E_{pk}(y), C₁ and C₂ jointly want to evaluate whether x > y.
- Existing SC protocols require encrypted bit representations as input rather than simple integers
- For this, we use secure bit-decomposition (SBD) [6,7]
 - convert $E_{pk}(x)$ to $\langle E_{pk}(x_1), ..., E_{pk}(x_w) \rangle$
 - convert $E_{pk}(y)$ to $\langle E_{pk}(y_1), ..., E_{pk}(y_w) \rangle$
 - $-x_1$, x_w denote the most and least significant bits of x

HE-based SC Protocol [4]

• C₁:

- Compute the difference $E_{pk}(d_i) = E_{pk}(x_i y_i)$
- Compute the XOR $E_{pk}(z_i) = E_{pk}(x_i \text{ XOR } y_i)$
- Compute encrypted vector γ such that $\gamma_i = 2y_{i-1} + z_i$, where $y_0 = 0$
- Compute encrypted vector δ such that $\delta_i = d_i + r_i * (\gamma_i 1)$
- **Observation:** exactly one of the values of δ is 1 (denoting x>y) and the remaining are random numbers
- Permute the encrypted vector and send it to C₂

• C₂:

- Decrypt the vector and check whether any of the values is 1
- If so, x > y. Otherwise, $x \le y$
- Note: The comparison result is revealed to C₂

GC-based SC Protocol [5]

- The basic idea is to build a garbled circuit (by one party) that can perform bit-wise comparisons (i.e., between x_i and y_i) and outputs a carryout bit which is fed as an input to the next iteration (along with x_{i+1} and y_{i+1}).
- The second party evaluates this circuit using oblivious transfer protocols and gets the comparison result of x >y as the final output.