Privacy-Preserving Complex Query Evaluation over Semantically Secure Encrypted Data Bharath K. Samanthula, Wei Jiang, and Elisa Bertino #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work ### **Cloud Computing** - Need for outsourcing - data and computations as well - useful for data owners' with limited/no resources - Key challenges - data are typically encrypted before outsourcing - efficiency of data management is a major requirement ## Query Processing over Encrypted Data - Privacy Requirements: - user's query should not be disclosed - confidentiality of outsourced data - The important question is: "how can the cloud perform searches over encrypted data without ever decrypting them or compromising the user's privacy" - Lead to new research: privacy-preserving query evaluation over encrypted data (PPQED) ## Three Possible Approaches - 1. Download the entire encrypted database - not practical, incurs heavy costs on user - 2. Secure Co-processors (e.g., IBM's 4764) - expensive, may not be meant for clouds - needs verification by users or a trusted third party - may not be affordable for small businesses - 3. Custom-designed cryptographic methods - problem-specific cryptographic solutions - our work is based on this approach ## Processing Complex Queries - Existing PPQED methods are too specific (e.g., range and aggregate queries) - Recent approaches: try to support complex queries, but are insecure / not feasible - Our focus: A PPQED framework that can securely evaluate complex queries and is efficient from the user's perspective #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work ## System Model - Three Entities: - The data owner (Alice) - The cloud service provider - The data consumer (Bob) - Alice wants to outsource its database T and query processing services to the cloud - Bob wants to retrieve the data records of T stored in the cloud that satisfy its query Q #### **Problem Definition** - Alice holds T = <t₁,..., t_n>, where each t_i,1 ≤ i ≤ n, is a database record and consists of m attributes - Alice encrypts T attribute-wise and sends it to a cloud - Bob issues a complex query Q to the cloud and wants to retrieve t_i's that satisfy Q. ### **Problem Definition (contd.)** - Q is defined as a query with arbitrary number of subqueries where each sub-query consists of conjunctions and/or disjunctions of an arbitrary number of relational predicates - Q: $G_1 \vee G_2 \vee ... \vee G_{l-1} \vee G_l \rightarrow \{0,1\}$ - G_j is a clause with a number b_j of predicates and is given by $P_{j,1} \wedge P_{j,2} \wedge ... \wedge P_{j,b_{j-1}} \wedge P_{j,b_{j}}$ - Eg: Q = ((Age ≥ 40) ^ (Disease = Diabetes)) ∨ ((Sex = M) ^(Marital Status = Married) ^ (Disease = Diabetes)) ## **Problem Definition (contd.)** Main goal of PPQED: Facilitate Bob in efficiently retrieving from T' (encrypted version of T) the data records that satisfy Q in a privacy-preserving manner: $PPQED(T', Q) \rightarrow S$ where $S \subseteq T$ denotes the output set of records that satisfy $Q, \forall t' \in S, Q(t') = 1$ ### **Privacy Goals** - Data confidentiality of T (for Alice) at all times - Query Privacy (for Bob) - S should be disclosed only to Bob - T-S should never be disclosed to Bob and Alice - Privacy of data access patterns: access patterns to data for any two queries Q and Q' should be indistinguishable to Cloud #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work ## Comparison with Related work | Method | Low Cost
On Bob | Data
Confidentiality | Query
Privacy | Hide Data
Access
Patterns | CNF and
DNF Query
Support | |-------------------------|--------------------|-------------------------|------------------|---------------------------------|---------------------------------| | Golle et al.
[1] | × | ✓ | V | × | × | | Boneh and
Waters [2] | × | ✓ | V | × | × | | Popa et al.
[3] | • | × | × | × | ✓ | | This paper | • | ✓ | V | • | • | ^[1] Golle, P., Staddon, J., Waters, B., Secure conjunctive keyword search over encrypted data, In: ANCS, pp. 31-45, Springer (2004) ^[2] Boneh, D., Water, B., Conjunctive, subset, and range queries on encrypted data, In: TCC, pp. 535-554, Springer (2007) ^[3] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H., Cryptdb: protecting confidentiality with encrypted query processing, In: SOSP, pp. 85-100, ACM (2011) #### **Adversarial Model** - Secure Multi-party Computation (SMC): - semi-honest model - malicious model - Our work assumes the semi-honest model (existing approaches are also based on this model) - Future Work: Extend our solutions to the malicious setting ### The Paillier Cryptosystem - Additive homomorphic and probabilistic encryption scheme - (E_{pk}, D_{sk}): encryption and decryption functions - Homomorphic addition: $D_{sk}(E_{pk}(x+y)) = D_{sk}(E_{pk}(x)*E_{pk}(y) \mod N^2)$ - Homomorphic multiplication: $D_{sk}(E_{pk}(x*y)) = D_{sk}(E_{pk}(x)^y \mod N^2)$ - Semantic security: Given a ciphertext, the adversary cannot deduce any information about the corresponding plaintext #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work #### **Federated Cloud Model** - Two non-colluding semi-honest cloud service providers, denoted by C₁ and C₂ (they together form a federated cloud) - Alice generates (pk,sk), computes T' using pk and outsources it to C₁, where T'_{i,j} = E_{pk}(t_{i,j}), for 1 ≤ i ≤ n and 1 ≤ j ≤ m - She also outsources sk to C₂ #### Basic idea - Divide and Conquer: - securely evaluate each predicate - securely combine the predicate results - Key challenge: - to perform the above two tasks over encrypted data in a privacy-preserving manner #### **Secure Primitives** - Secure Multiplication (SM): C₁ holds E_{pk}(a), E_{pk}(b) and C₂ holds sk, it computes E_{pk} (a*b) - Secure Bit-OR (SBOR): C₁ holds Epk(o₁), Epk(o₂) and C₂ holds sk, it computes Epk(o₁∨o₂) - Secure Comparison (SC): C_1 holds $E_{pk}(a)$, $E_{pk}(b)$ and C_2 holds sk, it computes $E_{pk}(c)$, where c = 1 if a > b and c = 0 otherwise. Here we assume $0 \le a,b < 2^w$ - Note: the outputs are revealed only to C₁ ## Secure Multiplication **Require:** C_1 has $E_{pk}(a)$ and $E_{pk}(b)$; C_2 has sk - **1.** C_1 : (a). Pick two random numbers $r_a, r_b \in Z_N$ - (b). $a' \leftarrow E_{pk}(a) * E_{pk}(r_a)$ - (c). b' $\leftarrow E_{pk}(b) * E_{pk}(r_b)$; send a', b' to C_2 - **2.** C_2 : (a). Receive a' and b' from C_1 - (b). $h_a \leftarrow D_{sk}(a')$ - (c). $h_b \leftarrow D_{sk}(b')$ - (d). $h \leftarrow h_a * h_b \mod N$ - (e). $h' \leftarrow E_{pk}(h)$; send h' to C_1 - 3. C1: (a). Receive h' from C_2 - (b). $s \leftarrow h' * E_{pk}(a)^{N-rb}$ - (c). $s' \leftarrow s * E_{pk}(b)^{N-ra}$ - (d). $E_{pk}(a * b) \leftarrow s' * E_{pk}(N r_a * r_b)$ #### **Evaluation of a Predicate** Let P: (k, α, op) be a predicate, where α denotes the search input, k denotes the attribute index, and op denotes the relational operator t_i satisfies the predicate P (i.e., P(t_i)=1) iff the relational comparison operation op on $t_{i,k}$ and α returns the Boolean value True. ## Secure Evaluation of Individual Predicates (SEIP) - For a given P (where the search input is in encrypted format), C₁ and C₂ have to securely compute E_{pk}(P(t_i)) - Two approaches: - Homomorphic Encryption (HE) - Garbled Circuits (GC) ## HE based Solution (SEIP_h) - Given $E_{pk}(t_{i,k})$ and $E_{pk}(\alpha)$, C_1 and C_2 need to compute $E_{pk}(c)$, where c = 1 if $t_{i,k} > \alpha$, and c = 0 otherwise - Existing solution [4] leaks c to at least one party - We extend the solution in [4] to compute E_{pk}(c), without leaking c or any other information ### **HE-based SC Protocol [4]** #### • C₁: - Compute the difference $E_{pk}(d_i) = E_{pk}(x_i y_i)$ - Compute the XOR $E_{pk}(z_i) = E_{pk}(x_i \text{ XOR } y_i)$ - Compute encrypted vector γ such that $\gamma_i = 2y_{i-1} + z_i$, where $y_0 = 0$ - Compute encrypted vector δ such that $\delta_i = d_i + r_i * (\gamma_i 1)$ - **Observation:** exactly one of the values of δ is 1 (denoting x>y) and the remaining are random numbers - Permute the encrypted vector and send it to C₂ #### • C₂: - Decrypt the vector and check whether any of the values is 1 - If so, x > y. Otherwise, $x \le y$ - Note: The comparison result is revealed to C₂ ## SEIP_h (contd.) - C₁ randomly selects a functionality F: t_{i,k} > α or t_{i,k} ≤ α - C₁ and C₂ together run the SC protocol of [4] and the (oblivious) comparison result c' is known only to C₂ - C₂ encrypts c' and sends it to C₁ - Depending on F, C₁ computes E_{pk}(c) from E_{pk}(c') #### Department of Computer Science ## SEIP_h (contd.) - details #### C₁: - chooses F randomly and proceeds as follows. - If F: x > y, compute $E_{pk}(d_i) = E_{pk}(x_i y_i)$. - Otherwise, compute $E_{pk}(d_i) = Epk(y_i x_i)$, for $1 \le i \le w$. - computes the encrypted vector δ using the similar steps (as discussed above) in protocol [4]. - permutes the encrypted vector (denoted as v) and sends v to C₂. #### C_2 : - decrypts the encrypted vector component-wise and finds the index k. - If $D_{sk}(v_k) = 1$, then compute $U = E_{pk}(1)$. - Else, i.e., when $D_{sk}(v_k) = -1$, compute $U = E_{pk}(0)$ - sends U to C1. #### C_1 : - computes the output E_{pk}(c) as follows. - If F: x > y, then $E_{pk}(c) = U$. - Else, $E_{pk}(c) = E_{pk}(1) * U^{N-1}$. ## GC based solution (SEIP_g) - C₁ (circuit generator) and C₂ (circuit evaluator) convert E_{pk}(t_{i,k}) and E_{pk}(α) into garbled values (as a part of circuit) - C₁ and C₂ compare t_{i,k} and α using the SC technique given in [5]. - The result is randomized (as part of the circuit) by a value known only to C₁. The randomized result (revealed to C₂) is encrypted and sent to C₁ - Finally, C₁ removes the random factor to get E_{pk}(c) ### **Proposed PPQED Protocol** - Stage 1 Secure Evaluation of Predicates (SEP) - SEIP_n or SEIP_q(depending on the domain size) - Stage 2 Secure Retrieval of Output Data (SROD) ## A naïve solution (SROD_b) - Use SM to evaluate each clause G_i - Given $E_{pk}(P_{j,h}(t_i))$, compute $E_{pk}(G_j(t_i)) = E_{pk}(P_{j,1}(t_i) \wedge ... \wedge P_{j,b_j}(t_i))$ using SM - Use SBOR to compute final query result - Given $E_{pk}(G_j(t_i))$, compute $E_{pk}(Q(t_i)) = E_{pk}(G_1(t_i)) \cdot ...$ $\vee G_l(t_i)$ - Expensive for large number of predicates and clauses ## Our Solution (SROD_s) - To compute $E_{pk}(G_i(t_i))$: - Compute $E_{pk}(\Sigma_h P_{j,h}(t_i))$ - Compare it with b_i using SC - Key Observation: $G_j(t_i) = 1$ iff $\Sigma_h P_{j,h}(t_i) = b_j$ - To compute E_{pk}(Q(t_i)): - Compute $E_{pk}(\Sigma_j G_j(t_i))$ - Compare it with 0 using SC - **Key Observation**: $Q(t_i) = 1$ iff $\Sigma_j G_j(t_i) > 0$ #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work ## SEIP_h vs. SEIP_g - Implemented both using the Paillier Scheme - Linux machine with Intel[™] Xeon[™] Six-Core® CPU 3.07 GHz processor, with 12 GB RAM, running Ubuntu 10.04 LTS Encryption key size (*K*) is set to 1024 bits ## SROD_b Vs. SROD_s For any given data record t_i | Method | Computations | Communications | |-------------------|-------------------------------|----------------------------| | SROD _b | O(l * s) encryptions | O(K * l * s) bits | | SROD _s | $O(l * \log_2 s)$ encryptions | $O(K * l * \log_2 s)$ bits | - *I*: number of clauses, *s*: upper bound on the number of predicates in each clause - Our approach for SROD clearly outperforms the basic solution if s is large #### **Outline** - Motivation - Problem Statement - Related Work & Background - Proposed Solution - Complexity Analysis - Conclusions/Future work ### **Summary** - A federated cloud framework that can support evaluations of complex queries in a privacypreserving manner - Hybrid solution: homomorphic encryption or garbled circuits - Systematic approach to efficiently aggregate the predicate results - Our approach guarantees data confidentiality and privacy of the user's query #### **Future Work** - Implementation with MapReduce framework - Extension to malicious setting - In current work, we considered basic relational operators {<, >, ≤, ≥,=} - Focus on other SQL queries, such as JOIN and GROUP BY, and evaluate their complexities Thank You © **ANY QUESTIONS !!!** #### **APPENDIX** ## Semantically Secure Encrypted Data - Why semantic security? - data indistinguishability from cloud's perspective - ensures privacy of the user's data - users have more control over their data - Example: the Paillier's encryption scheme #### **HE-based SC Protocol [4]** - Goal of SC: Given that C₁ holds two integers E_{pk}(x) and E_{pk}(y), C₁ and C₂ jointly want to evaluate whether x > y. - Existing SC protocols require encrypted bit representations as input rather than simple integers - For this, we use secure bit-decomposition (SBD) [6,7] - convert $E_{pk}(x)$ to $\langle E_{pk}(x_1), ..., E_{pk}(x_w) \rangle$ - convert $E_{pk}(y)$ to $\langle E_{pk}(y_1), ..., E_{pk}(y_w) \rangle$ - $-x_1$, x_w denote the most and least significant bits of x ### **HE-based SC Protocol [4]** #### • C₁: - Compute the difference $E_{pk}(d_i) = E_{pk}(x_i y_i)$ - Compute the XOR $E_{pk}(z_i) = E_{pk}(x_i \text{ XOR } y_i)$ - Compute encrypted vector γ such that $\gamma_i = 2y_{i-1} + z_i$, where $y_0 = 0$ - Compute encrypted vector δ such that $\delta_i = d_i + r_i * (\gamma_i 1)$ - **Observation:** exactly one of the values of δ is 1 (denoting x>y) and the remaining are random numbers - Permute the encrypted vector and send it to C₂ #### • C₂: - Decrypt the vector and check whether any of the values is 1 - If so, x > y. Otherwise, $x \le y$ - Note: The comparison result is revealed to C₂ #### **GC-based SC Protocol [5]** - The basic idea is to build a garbled circuit (by one party) that can perform bit-wise comparisons (i.e., between x_i and y_i) and outputs a carryout bit which is fed as an input to the next iteration (along with x_{i+1} and y_{i+1}). - The second party evaluates this circuit using oblivious transfer protocols and gets the comparison result of x >y as the final output.